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a b s t r a c t 

Motivated by recent real-life applications in Location Theory in which the location decisions generate 

controversy , we propose a novel bilevel location model in which, on the one hand, there is a leader that 

chooses among a number of fixed potential locations which ones to establish. Next, on the second hand, 

there is one or several followers that, once the leader location facilities have been set, chooses his lo- 

cation points in a continuous framework. The leader’s goal is to maximize some proxy to the weighted 

distance to the follower’s location points, while the follower(s) aim is to locate his location points as 

close as possible to the leader ones. We develop the bilevel location model for one follower and for any 

polyhedral distance, and we extend it for several followers and any � p -norm, p ∈ Q , p ≥ 1 . We prove the 

NP-hardness of the problem and propose different mixed integer linear programming formulations. More- 

over, we develop alternative Benders decomposition algorithms for the problem. Finally, we report some 

computational results comparing the formulations and the Benders decompositions on a set of instances. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Location is a research area devoted to the optimal placement

f facilities ( Albareda-Sambola et al., 2015; Boonmee et al., 2017;

ammad et al., 2018; Kalcsics et al., 2014; Labbé et al., 1995;

ickel and Puerto, 2006; Owen and Daskin, 1998; Puerto and

odríguez-Chía, 2015 ), including among many others emergency

ystems ( Bélanger et al., 2019; Boonmee et al., 2017; Schmid and

oerner, 2010 ), service providers ( Albareda-Sambola et al., 2009;

erman et al., 2010 ), infrastructures, etc., and it is a basic building

lock of most transportation, communication or logistic problems.

oreover, these models also fit perfectly to positioning problems,

s for instance of firms or products, in spaces of attributes or fea-

ures where the dimension is much higher than in standard loca-

ion problems on the plane or the tri-dimensional space. An opti-

al location can be chosen according to different criteria depend-

ng on the rationale behind the considered model. The most popu-

ar ones are the minimization of the total or maximum transporta-

ion cost ( Albareda-Sambola et al., 2015; Boonmee et al., 2017 ),

he maximization of some coverage goal ( Albareda-Sambola et al.,

009; Bélanger et al., 2019; Berman et al., 2010; Boonmee et al.,

017 ), or the minimization of the undesirable effects induced by
∗ Corresponding author. 
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he facilities ( Brimberg and Juel, 1998; Church and Scaparra, 2007;

ammad et al., 2018 ). 

Location Theory includes a number of real-life applications in

hich the location decisions generate controversy . This controversy

ust be understood as a disagreement among users with different,

on-aligned or opposite interests. Examples of this controversial

ocation can be found in the literature, for example, in the areas

f semi-obnoxious facility location or in problems that involve the

ocation and protection of critical infrastructures, the positioning

f products in attribute spaces or facilities sensitive to intentional

ttacks. 

In the last decades, the consciousness-raising in environmen-

al issues has grown substantially, specially in those aspects that

ffect human health or have adverse effects on people. As a con-

equence of this awareness-raising, the location of (semi-) obnox-

ous facilities has been extensively studied. Obnoxious facilities are

hose that generate a disservice to the people nearby while pro-

ucing an intended product or service ( Erkut and Neuman, 1989 ).

owever, if only these undesirable effects are taken into account

hen locating them, these facilities would never be opened or

ould be located too far from the population centers making use

f the produced services, thus generating huge costs. For that rea-

on, in the last years, there has been an increasing focus in ana-

yzing the problem of locating semi-obnoxious facilities ( Brimberg

nd Juel, 1998; Hammad et al., 2018; Melachrinoudis and Xan-

hopulos, 2003 ). Semi-obnoxious facilities has been defined as

https://doi.org/10.1016/j.cor.2019.03.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2019.03.003&domain=pdf
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useful but unwelcome facilities that produce environmental con-

cerns. That is, facilities that population centers (demand points)

want them away, but there are some interests (political, economi-

cal...) in locating them close the demand points, generating in this

way, location controversy. Classical examples of this kind of facili-

ties are chemical and power plants, airports, waste dumps, detox-

ification centers, etc., as listed in Melachrinoudis and Xanthopulos

(2003) . 

Another area that has also attracted increasing attention of re-

searchers in the last years is the location and protection of vul-

nerable facilities (with high risk of disruption) and the protection

of critical facilities, including not only those related to disruptions

produced by natural disasters or natural failures, but also those

referred to disruptions produced by man-made attacks ( Aksen

and Aras, 2012; Church and Scaparra, 2007; Scaparra and Church,

2008 ). Critical infrastructure is a term to describe assets that are

essential for the functioning of a society and economy. Most com-

monly associated with the term are facilities for heating, water

supply, public health, security services, telecommunication, eco-

nomic sector, etcetera. Clearly, the location and protection of these

types of facilities generates also controversy, since the population

is aware of the risks that may appear close to those facilities due

to the confrontation between two antagonist parties: attackers and

defenders with visibly opposite goals. 

The above-mentioned problems have been usually addressed

via biobjective (multiobjective) approaches, difference of objective

functions, maximin optimization and, if there exists a hierarchical

structure in the decision-making process, by means of bilevel opti-

mization. 

Motivated by the increasing interest in real-world applications

generating location controversy, we introduce a new model for its

study and analysis. 

The situation that we want to address models the existence of

two parties acting sequentially in a decision-making process. On

the one hand, there is a leader who wants to locate some primary

facilities and must choose among a number of fixed potential lo-

cations where to establish them. On the other hand, there is one

(or several) follower(s) that, once the primary facilities have been

set, chooses the placement of some secondary facilities, in a con-

tinuous environment. The leader’s goal is to maximize some proxy

of the overall weighted distance to the follower’s secondary facil-

ity locations. Meanwhile, the follower(s) aim is to locate their sec-

ondary facilities as close as possible to the primary ones, minimiz-

ing a cost proportional to the distance from the secondary facilities

to the primary ones set by the leader. 

The reader may observe that this model fits perfectly to the

cases mentioned above. 

The paper is structured as follows. The following section intro-

duces the model, sets the notation and proves the NP-hardness

of the considered problem. In Section 3 , we develop the mathe-

matical programming formulations and resolution algorithms for

the problem with one follower and any block norm. Two different

approaches, based on the representation of the norms, have been

considered. Furthermore, due to their importance, they have been

applied to the case of the � 1 and � ∞ 

norm. Section 4 is devoted to

the computational study of the different methods discussed in the

previous sections. In the next Section 5 , we extend the model to

several followers and non-polyhedral norms. Finally, Section 6 con-

cludes the paper. 

2. The model 

We consider a situation with two different types of location en-

tities: the primary facilities (critical infrastructures, goods to pro-

tect, demand-points, etc.), and the secondary facilities (terrorists
ets, thefts, semi-obnoxious facilities, detoxification centers, recy-

ling or power plants, etc.). The primary facilities wish to be lo-

ated as far as possible from the secondary facilities, meanwhile

he secondary facilities aim to be located as close as possible to

he primary ones. The model we present consists in choosing the

ocation of the primary facilities (these are set first), taking into

ccount that, the secondary facilities will be located afterwards

nowing their location. For the ease of presentation, we restrict

urselves to the case where a unique secondary facility will be lo-

ated. The reader is referred to Section 5 for the extension to sev-

ral facilities. 

We will model this hierarchical structure using Bilevel Op-

imization. Bilevel programming targets hierarchical optimization

roblems in which part of the constraints translate the fact that

ome of the variables constitute an optimal solution of another op-

imization problem. There exist a leader that acts first, and then a

ollower that reacts to the leader’s decision. 

We assume that there is a leader (setting the primary facilities)

hat chooses among a set of potential locations B the placement

f some new primary facilities. We also consider that there is a

et NB of primary facilities already established, and there exists a

udget constraint on the overall investment for the location of the

ew primary facilities. On the other hand, once the primary fa-

ilities are set, the follower chooses the location of the secondary

acility in a continuous framework. The proximity between the pri-

ary and secondary facilities is measured as a weighted sum of a

istance to all primary facilities. 

We denote by c j the cost of opening the primary facility j , for all

 ∈ B , by C the maximum budget, by f j ∈ R 

n the given location point

 ∈ B ∪ NB , and by w j the weight factor that scales the distance from

he secondary facility to f j according to its importance. We define

he binary decision variables y j = 1 if f j , j ∈ B , is open, and y j = 0

therwise. 

For the follower problem we define the decision variable x ∈ R 

n 

hat specifies the location of the secondary facility. 

Therefore, the bilevel problem can be modeled as: 

ax 
∑ 

j∈ B 
w j d(x, f j ) y j + 

∑ 

j∈ NB 

w j d(x, f j ) BLP

st. 
∑ 

j∈ B 
c j y j ≤ C, (1)

 j ∈ { 0 , 1 } j ∈ B, (2)

 ∈ arg min 

x 

∑ 

j∈ B 
w j d(x, f j ) y j + 

∑ 

j∈ NB 

w j d(x, f j ) , 

here d ( x, f j ) denotes any distance induced by some norm: 

(x, f j ) = ‖ x − f j ‖ . 

Observe that ( BLP ) is a bilevel max-min problem, in which

he objective function of both levels is a proxy of the distance

etween the primary and the secondary facilities. The resulting

ilevel problem contains a knapsack problem at the upper level,

nd a continuous single-facility location problem at the lower

evel. 

To state the complexity of the problem, we provide the follow-

ng result. 

heorem 1. The bilevel location model ( BLP ) is NP-hard. 

roof. Let us consider the distance induced by a norm ‖ · ‖ , and

n instance such that | NB | = 1 and w j 0 > 

∑ 

j∈ B w j for j 0 ∈ NB . 

For this instance, we know, using the majority theorem, see

or example Love et al. (1998) , that the optimal solution of

he continuous location problem is x ∗ = f 0 
j 
. Then, if we denote
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∗
j 
= ‖ f 0 

j 
− f j ‖ , Problem ( BLP ) can be written as: 

ax 
∑ 

j∈ B 
w j y j r 

∗
j 

.t. 
∑ 

j∈ B 
c j y j ≤ C, 

 j ∈ { 0 , 1 } ∀ j ∈ B, 

hich is a knapsack problem, known to be NP-hard ( Garey and

ohnson, 1979 ). �

. Mathematical programming formulations and resolution 

lgorithms 

This section is devoted to present useful mathematical pro-

ramming formulations for ( BLP ) in order to solve it with off-the-

helf solvers. In addition, we will present alternative add-hoc algo-

ithms, based on decompositions, that prove to be more efficient

han the solvers acting on the Mixed Integer Linear Programming

MILP) above-mentioned formulations. 

For the sake of presentation, we assume in this section that we

easure distances via block norms . Theses block norms are also

nown as polyhedral norms. All the norms ||.|| P verifying that its

nit ball P is a compact, convex, polyhedral set, symmetric with

espect to the origin and containing the origin in its interior, be-

ong to this family of polyhedral norms. We will denote then by

xt( P ) the set of extreme points of P and by P o : the polar set of P ,

hat is, P o := { x ∈ R 

n : 〈 x, p〉 ≤ 1 , ∀ p ∈ P } . The reader may note

hat the commonly used � 1 and � ∞ 

norms belong to this family. 

In order to deal with the problem we develop two different

rocedures: the first one is based on the evaluation of the norm

hrough its primal expression, using its unit ball defined by P , and

he second one evaluates the norm through its dual expression, us-

ng its dual unit ball P o . 

These two different forms used to handle the problem are jus-

ified, as we will see, by the fact that depending on the cases one

an be more efficient than the other due to the structure of the

et of extreme points of P and P o . We will illustrate this behavior

n the following sections with the � 1 and � ∞ 

norms. 

.1. First approach: evaluating norms with its primal expression 

It is well-known (see for example Nickel and Puerto, 2006 and

ockafellar, 1970 ), that the value of || x || P is given as: 

| x || P = min 

∑ 

b∈ ext (P) 

μb , PrimalNormP

.t. x = 

∑ 

b∈ ext (P) 

μb b, 

b ≥ 0 , b ∈ ext (P ) . 

Using such representation we develop a MILP Formulation and

 Benders like algorithm in order to solve ( BLP ), using off-the-shelf

olvers. 

.1.1. A MILP formulation 

Let us assume that x = (x 1 , . . . , x n ) , f j = ( f j1 , . . . , f jn ) , for all

 ∈ B ∪ NB and b = (b 1 , . . . , b n ) for all b ∈ ext ( P ). By representing || x || P
s in ( PrimalNormP ), ( BLP ) can be written as the following bilevel

roblem: 

ax 
∑ 

j∈ B 
w j y j r j + 

∑ 

j∈ NB 

w j r j BLP − P
.t. 
∑ 

j∈ B 
c j y j ≤ C, (1) 

 j ∈ { 0 , 1 } j ∈ B, (2)

 ∈ arg min 

x,r,μ

∑ 

j∈ B 
w j y j r j + 

∑ 

j∈ NB 

w j r j , (3)

 j = 

∑ 

b∈ ext(P) 

μ j 

b 
, j ∈ B ∪ NB, (4) 

 i = 

∑ 

b∈ ext(P) 

μ j 

b 
b i + f ji , j ∈ B ∪ NB, i = 1 , ..., n, (5) 

j 

b 
≥ 0 , b ∈ ext(P ) , j ∈ B ∪ NB, (6) 

 j ≥ 0 , j ∈ B ∪ NB, (7) 

 i ∈ R , i = 1 , ..., n. (8) 

In the above formulation, the secondary facility x is represented

ith non-negative coefficients in terms of the reference system in-

uced by f j and the extreme points of P (fundamental directions

f the norm b ∈ ext ( P )). The summation of the coefficients in this

epresentation gives the norm of a vector (see ( PrimalNormP )).

he minimality of the r j variables is ensured because they are ob-

ained minimizing a linear expression with non-negative coeffi-

ients. Therefore, variables r j , defined in constraint (4) , represent

he distance between x and f j and constraints (5) set the correct

epresentation of coordinates of the secondary facility in terms of

he reference system induced by f j and the extreme points of P .

onstraints (1) and (2) , as in ( BLP ), are knapsack constraints, corre-

ponding to the choice of the location of the primary facilities, ac-

ording to a budget constraint. Constraints (3) –(8) define the lower

evel problem, the continuous location problem, in which the rep-

esentation of the norm has been included. 

roposition 1. Problem ( BLP − P ) can be reformulated as the follow-

ng single level problem ( BLP − P 

′ ). 

ax 
∑ 

j∈ B 
w j y j r j + 

∑ 

j∈ NB 

w j r j BLP − P 

′ 

.t. 
∑ 

j∈ B 
c j y j ≤ C, (1) 

 j ∈ { 0 , 1 } j ∈ B, (2)

 

j∈ B 
w j y j r j + 

∑ 

j∈ NB 

w j r j = 

n ∑ 

i =1 

∑ 

j∈ B ∪ NB 

β ji f ji (9)

 j = 

∑ 

b∈ ext(P) 

μ j 

b 
, j ∈ B ∪ NB, (4)

 i = 

∑ 

b∈ ext(P) 

μ j 

b 
b i + f ji , j ∈ B ∪ NB, i = 1 , ..., n, (5)

j 

b 
≥ 0 , b ∈ ext(P ) , j ∈ B ∪ NB, (6)

 j ≥ 0 , j ∈ B ∪ NB, (7)

 i ∈ R , i = 1 , ..., n, (8)

j ≤ w j y j , j ∈ B, (10)

j ≤ w j , j ∈ NB, (11)∑ 

j∈ B ∪ NB 

β ji = 0 , i = 1 , ..., n, (12)

α j −
n ∑ 

i =1 

b i β ji ≤ 0 , j ∈ B ∪ NB, b ∈ ext(P ) . (13)
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Proof. Given a solution y , representing a feasible set of loca-

tions for the primary facilities in ( BLP − P ), the inner problem in

( BLP − P ) is a feasible Linear Program (LP) with finite solution, and

its dual is: 

max 

n ∑ 

i =1 

∑ 

j∈ B ∪ NB 

β ji f ji Dual − P

s.t. α j ≤ w j y j , j ∈ B, (10)

α j ≤ w j , j ∈ NB, (11)

∑ 

j∈ B ∪ NB 

β ji = 0 , i = 1 , ..., n, (12)

−α j −
n ∑ 

i =1 

b i β ji ≤ 0 , j ∈ B ∪ NB, b ∈ ext(P ) . (13)

Then, Problem ( BLP − P ) is equivalent to the single level formu-

lation ( BLP − P 

′ ) since constraint (9) is the strong duality condition

stating that the primal and dual objectives of the lower level prob-

lem must be equal, and the blocks of constraints (1) –(2), (4) –(8)

and (10) –(13) represent, respectively, the upper level problem con-

straints, the lower level primal problem constraints and the lower

level dual problem constraints. �

We can observe that the above formulation contains some bilin-

ear terms: r j y j . In order to transform that formulation into a mixed

integer linear problem, the bilinear terms can be linearized (see

McCormick, 1976 ) giving rise to an exact MILP formulation for the

bilevel problem. To this end, we substitute the terms r j y j by the

variables ˆ r j ; ∀ j ∈ B ∪ NB and add the following set of constraints: 

ˆ r j ≤ r j , j ∈ B ∪ NB, 

ˆ r j ≤ M j y j , j ∈ B ∪ NB 

ˆ r j ≥ r j − M j (1 − y j ) , j ∈ B ∪ NB 

ˆ r j ≥ 0 , j ∈ B ∪ NB. 

(14)

The previous block of constraints requires to set a valid value

for the “big- M ”-constants. It is easy to observe that M j can be cho-

sen equal to the maximum distance between f j and any other point

in B ∪ NB . 

3.1.2. Benders like algorithm for solving ( BLP ) 

Now, we propose an alternative method to solve the bilevel lo-

cation problem under a block norm which is based on a decompo-

sition of the problem. 

For a given solution y , the inner problem in ( BLP − P ) is an LP

whose set of constraints does not depend on the variables associ-

ated to the master (leader) problem (does not depend on y ). Then,

if we denote by P the set of extreme points of the inner problem,

solving such problem is equivalent to evaluate the objective func-

tion at the points in P and to take the minimum objective function

value. Then, the continuous location inner problem can be rewrit-

ten as the following optimization problem: 

max q 

s.t. q ≤
∑ 

j∈ B 

n ∑ 

i =1 

w j y j r 
τ
j + 

∑ 

j∈ NB 

n ∑ 

i =1 

w j r 
τ
j , ∀ r τ ∈ P . 

In order to apply Benders decomposition, and using the above

formulation, Problem ( BLP − P ) can be reformulated as: 

max q 

s.t. 
∑ 

j∈ B 
c j y j ≤ C, 

y j ∈ { 0 , 1 } , j ∈ B, 
 ≤
∑ 

j∈ B 

n ∑ 

i =1 

w j y j r 
τ
j + 

∑ 

j∈ NB 

n ∑ 

i =1 

w j r 
τ
j , ∀ r τ ∈ P . 

Our approach to solve the above problem is to sequentially

dentify and add extreme points in P to the problem until a cer-

ificate of optimality is fulfilled (eventually in the worse case after

dding all extreme points). 

To describe the algorithm, we denote by P a subset of points

n P . With the purpose of obtaining upper bounds for ( BLP − P ), in

he algorithm, we define the following Master Problem: 

ax q MP

.t. q ≤
∑ 

j∈ B 

n ∑ 

i =1 

w j y j r 
τ
j + 

∑ 

j∈ NB 

n ∑ 

i =1 

w j r 
τ
j , r τ ∈ P, 

 

j∈ B 
c j y j ≤ C, 

 j ∈ { 0 , 1 } ∀ j ∈ B. 

Lower bounds for the Problem ( BLP − P ) are obtained in the al-

orithm by solving the following subproblem: 

 ( ̄y ) = min 

∑ 

j∈ B 
w j ̄y j r j + 

∑ 

j∈ NB 

w j r j , PP − P ( y )

 j = 

∑ 

b∈ ext(P) 

μ j 

b 
, j ∈ B ∪ NB, 

 i = 

∑ 

b∈ ext(P) 

μ j 

b 
b i + f ji , j ∈ B ∪ NB, i = 1 , ..., n, 

j 

b 
≥ 0 , b ∈ ext(P ) , j ∈ B ∪ NB, 

 j ≥ 0 , j ∈ B ∪ NB, 

 i ∈ R , i = 1 , ..., n. 

If r̄ is an optimal solution of the above problem for a given so-

ution ȳ feasible to the master problem ( MP ), the inequality q ≤
 

j∈ B 

n ∑ 

i =1 

w j y j ̄r j + 

∑ 

j∈ NB 

n ∑ 

i =1 

w j ̄r j either generates a new lower bound

or ( MP ) or, if the optimal solution coincides with the previous

ne, it is a certificate of optimality. Based on this recursion, we

ropose the following algorithm: 

lgorithm 1 Benders decomposition Algorithm 

nitialization Choose a solution y 0 satisfying the knapsack con-

traint, and solve the problem PP − P ( ̄y ) for ȳ = y 0 . Let r 0 be an

ptimal solution for PP − P ( ̄y ) . Take P = { 0 } and go to iteration

= 1 . 

teration ν = 1 , 2 , . . . Solve the Master Problem MP . Let y ∗ be an

ptimal solution of such problem and q ∗ the corresponding opti-

al value. 

• Solve PP − P ( ̄y ) for ȳ = y ∗.If q ∗ = q (y ∗) . END. 
• Otherwise, let r ∗ be an optimal solution of PP − P ( ̄y ) . Take r ν =

r ∗, P := P ∪ { ν} , and go to iteration ν := ν + 1 . 

.1.3. The case of the � 1 -norm 

In this section, we apply the above reasoning to the particu-

ar important case of problem ( BLP − P ) under the rectangular dis-

ance, that is, the distance induced by the � 1 -norm. We take ad-

antage of some specific properties of this norm to exploit further

ts algorithmic implications. As before, n denotes the dimension of

he space. 
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The set of extreme points of the unit ball of the � 1 norm

s ext(P ) = { e 1 , ..., e n , −e 1 , ..., −e n } , where e i the i th vector of the

anonical basis. Further, the � 1 -norm of a vector x is given by

 x ‖ 1 = 

∑ n 
i =1 | x i | . 

By introducing variables r ji representing the non linear terms

 x i − f ji | , we adapt ( BLP − P ) to the � 1 -norm case. 

ax 
∑ 

j∈ B 
w j y j 

n ∑ 

i =1 

r ji + 

∑ 

j∈ NB 

w j 

n ∑ 

i =1 

r ji BLP − � 1 

.t. 
∑ 

j∈ B 
c j y j ≤ C, 

 j ∈ { 0 , 1 } , j ∈ B, 

 ∈ arg min 

x 

∑ 

j∈ B 
w j y j 

n ∑ 

i =1 

r ji + 

∑ 

j∈ NB 

w j 

n ∑ 

i =1 

r ji (15)

 ji ≥ x i − f ji , j ∈ B ∪ NB, i = 1 , ..., n, (16)

r ji ≥ f ji − x i , j ∈ B ∪ NB, i = 1 , ..., n, (17) 

As in Section 3.1.1 , we can derive a MILP by using the primal

ual optimality conditions and then linearizing the bilinear terms

 j r ji by introducing new variables ˆ r ji . In this formulation, dual vari-

bles αji correspond to constraints (16) . The dual variables associ-

ted to constraints (17) have been eliminated. 

ax 
∑ 

j∈ B 
w j 

n ∑ 

i =1 

ˆ r ji + 

∑ 

j∈ NB 

w j 

n ∑ 

i =1 

r ji BLP − � 1 − 1

.t. 
∑ 

j∈ B 
c j y j ≤ C, (1) 

 j ∈ { 0 , 1 } , j ∈ B, (2) 

 

j∈ B 

n ∑ 

i =1 

w j ̂  r ji + 

∑ 

j∈ NB 

n ∑ 

i =1 

w j r ji = 

∑ 

j∈ B ∪ NB 

n ∑ 

i =1 

− f ji α ji 

+ 

∑ 

j∈ B 

n ∑ 

i =1 

f ji (w j y j − α ji ) + 

∑ 

j∈ NB 

n ∑ 

i =1 

f ji (w j − α ji ) , (18) 

 ji ≥ x i − f ji , j ∈ B ∪ NB, i = 1 , ..., n, (19) 

 ji ≥ f ji − x i , j ∈ B ∪ NB, i = 1 , ..., n, (20) 

 i ∈ R , i = 1 , ..., n, (8) 

ˆ 
 ji ≤ M ji y j , j ∈ B, i = 1 , ..., n, (21) 

ˆ 
 ji ≤ r ji , j ∈ B, i = 1 , ..., n, (22) 

ˆ 
 ji ≥ r ji − (1 − y j ) M ji , j ∈ B, i = 1 , ..., n, (23) 

ˆ 
 ji ≥ 0 , j ∈ B, i = 1 , ..., n, (24) 

α ji ≤ w j y j , j ∈ B, i = 1 , ..., n, (25) 

α ji ≤ w j , j ∈ B, i = 1 , ..., n, (26) 

α ji ≥ 0 , j ∈ B ∪ NB, i = 1 , ..., n, (27) 

∑ 

j∈ B 

(
−2 α ji + w j y j 

)
+ 

∑ 

j∈ NB 

(
−2 α ji + w j 

)
= 0 , i = 1 , ..., n. (28) 

The reader can observe that valid big-M constant in this formu-

ation are M ji = max k ∈ B ∪ NB | f ki − f ji | , for all i = 1 , . . . , n and j ∈ B . 
An alternative formulation can be derived for Problem ( BLP −
 1 ) by using the fact that the inner location problem can be de-

omposed into n independent linear programs, one for each coor-

inate. Using the optimality conditions for each such problem and

he linearization technique described above, we obtain a formu-

ation BLP- � 1 -2 identical to ( BLP − � 1 − 1 ) except that constraint

18) is replaced by the group of constraints: ∑ 

j∈ B w j ̂  r ji + 

∑ 

j∈ NB w j r ji = 

∑ 

j∈ B ∪ NB − f ji α ji + 

∑ 

j∈ B f ji (w j y j −
ji ) + 

∑ 

j∈ NB f ji (w j − α ji ) , i = 1 , ..., n. 

Algorithm 1 can also be adapted to the case of the � 1 -norm.

hen, q ( ̄y ) is obtained by solving the lower level problem defined

y (15) –(17) . In this case, it can be solved in O ( n | B ∪ NB |) time

ince, for each coordinate, it amounts to find the median of a dis-

rete distribution. 

We can also use the separability property in the proposed Ben-

ers Algorithm, by solving in each iteration n subproblems q i ( y )

one for each coordinate), and considering the following Master

roblem: 

ax 

n ∑ 

i =1 

q i 

s.t. 

 i ≤
∑ 

j∈ B 
w j y j z 

τ
i j + 

∑ 

j∈ NB 

w j z 
τ
i j ∀ τ ∈ P, ∀ i = 1 , ..., n, MP − � 1 − i

 

j∈ B 
c j y j ≤ C, 

 j ∈ { 0 , 1 } ∀ j ∈ B, 

We will compare the performance of the four approaches in the

omputational study presented in Section 4 . 

.2. Second approach: evaluating the norm by its dual expression 

Since the polar set of a polyhedron is a polyhedron, P o induces

he so-called dual norm of || · || P that can also be used to evalu-

te || · || P . In this case, || · || P is the optimal solution of the follow-

ng linear program (see for example Nickel and Puerto, 2006 or

ockafellar, 1970 ): 

| x || P = min r NormP 

0 

s.t. 

n ∑ 

i =1 

u i x i ≤ r, u ∈ ext (P 0 ) 

Depending on the number and structure of the set of extreme

oints of P and P o , it may be more convenient to compute || · || P , by

sing its primal or dual expression. Further, this dual representa-

ion leads to different MILP formulations and the Benders approach

an also be adapted. 

.2.1. MILP formulation 

Using the dual representation of the norm, ( BLP ) can be formu-

ated as: 

ax 
∑ 

j∈ B 
w j y j r j + 

∑ 

j∈ NB 

w j r j BLP − P 

0 

.t. 
∑ 

j∈ B 
c j y j ≤ C, (1) 

 j ∈ { 0 , 1 } j ∈ B, (2)

 ∈ arg min 

x,r 

∑ 

j∈ B 
w j y j r j + 

∑ 

j∈ NB 

w j r j , (9)
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r j ≥
n ∑ 

i =1 

u i (x i − f ji ) , u ∈ ext(P 0 ) , j ∈ B ∪ NB, (29)

r j ≥ 0 , j ∈ B ∪ NB, (7)

x i ∈ R , i = 1 , ..., n, (8)

where variables r j , defined in constraint (29) , represent the dis-

tance between x and f j . Constraints (1) and (2) relate the choice

of the location of the primary facilities, according to a budget con-

straint, and constraints (9), (29), (7) and (8) define the inner sub-

problem, in which the representation of the norm via its dual ex-

pression has been included. 

Proposition 2. Problem ( BLP − P 

0 ) can be formulated as the follow-

ing single level problem ( BLP − P 

0 ′ ). 

max 
∑ 

j∈ B 
w j y j r j + 

∑ 

j∈ NB 

w j r j BLP − P 

0 ′ 

s.t. 
∑ 

j∈ B 
c j y j ≤ C, 

y j ∈ { 0 , 1 } j ∈ B, 

∑ 

j∈ B 
w j y j r j + 

∑ 

j∈ NB 

w j r j = 

∑ 

u ∈ ext(P 0 ) 

∑ 

j∈ B ∪ NB 

( n ∑ 

i =1 

− f ji u i 

)
γu j , 

r j ≥
n ∑ 

i =1 

u i (x i − f ji ) , u ∈ ext(P 0 ) , j ∈ B ∪ NB, 

r j ≥ 0 , j ∈ B ∪ NB, 

x i ∈ R , i = 1 , ..., n, 

∑ 

u ∈ ext(P 0 ) 

γu j ≤ w j y j , j ∈ B, 

∑ 

u ∈ ext(P 0 ) 

γu j ≤ w j , j ∈ NB, 

∑ 

u ∈ ext(P 0 ) 

∑ 

j∈ B ∪ NB 

(−u i ) γu j = 0 , i = 1 , ...n, 

γu j ≥ 0 u ∈ ext(P 0 ) , j ∈ B ∪ NB 

The proof of this proposition follows the same lines as that of

Proposition 1 and is thus omitted. 

We can observe that in the above formulation there appear the

same bilinear terms that we have already obtained in Section 3.1.1 .

Therefore, the same linearization (14) can be applied to obtain the

corresponding MILP formulation. 

3.2.2. Benders like algorithm for solving ( BLP − P 

0 ) 

The Benders Algorithm proposed in Section 3.1.2 can also be

applied when the norm is induced by the polar polyhedron,

with the same Master Problem ( MP ) and the following primal

problem: 

min q (y ) = 

∑ 

j∈ B 
w j y j r j + 

∑ 

j∈ NB 

w j r j , PP − P 

0 

s.t. r j ≥
n ∑ 

i =1 

u ki (x i − f ji ) , u ∈ ext(P 0 ) , j ∈ B ∪ NB, 
 ≥ 0 , x ∈ R 

n , 

 i ∈ R , i = 1 , ..., n. 

.2.3. The case of the � ∞ 

-norm 

This is Section, we apply the above results to the important

ase of the infinity norm. The set of extreme points of the in-

nity norm is ext(P ) = 

{
( a 1 , ..., a n ) ∈ R 

n : a i ∈ { 1 , −1 } , i = 1 , ..n, 
}
,

o that | ext(P ) | = 2 n . Then formulation ( BLP − P 

′ ) would include

 

n (| B | + | NB | ) μ j 
e variables, and more than 2 n (| B | + | NB | ) con-

traints. However, the number of extreme points of the polar

olyhedron is much smaller: ext(P 0 ) = { e 1 , ..., e n , −e 1 , ..., −e n } and

 ext(P 0 ) | = 2 n . Further, the � ∞ 

-norm of a vector x is given by

 x ‖ ∞ 

= max i =1 , ... ,n | x i | . This allows to adapt ( BLP − P ) to the � ∞ 

-

orm case as follows: 

ax 
∑ 

j∈ B 
w j y j r j + 

∑ 

j∈ NB 

w j r j BLP − � ∞ 

.t. 
∑ 

j∈ B 
c j y j ≤ C, 

 j ∈ { 0 , 1 } , j ∈ B, 

 ∈ arg min 

x 

∑ 

j∈ B 
w j y j r j + 

∑ 

j∈ NB 

w j r j , 

 j ≥ x i − f ji , j ∈ B ∪ NB, i = 1 , ..., n, 

 j ≥ f ji − x i , j ∈ B ∪ NB, i = 1 , ..., n. 

Further, a MILP formulation can also be derived. 

ax 
∑ 

j∈ B 
w j ̂  r j + 

∑ 

j∈ NB 

w j r j BLP − � ∞ 

− 1

.t. 
∑ 

j∈ B 
c j y j ≤ C, 

 j ∈ { 0 , 1 } , j ∈ B, 

 

j∈ B 
w j ̂  r j + 

∑ 

j∈ NB 

w j r j = 

n ∑ 

i =1 

∑ 

j∈ B ∪ NB 

f ji (−γe i j + γ−e i j ) , 

 j ≥ x i − f ji , j ∈ B ∪ NB, i = 1 , ..., n, 

 j ≥ f ji − x i , j ∈ B ∪ NB, i = 1 , ..., n, 

 j ≥ 0 , j ∈ B ∪ NB, 

n 
 

i =1 

(γe i j + γ−e i j ) ≤w j y j , j ∈ B, 

n 
 

i =1 

(γe i j + γ−e i j ) ≤w j , j ∈ NB, 

∑ 

j∈ B ∪ NB 

(−γe i j + γ−e i j ) = 0 , i = 1 , ..., n, 

e i j ≥ 0 , j ∈ B ∪ NB, i = 1 , ..., n, 

−e i j ≥ 0 , j ∈ B ∪ NB, i = 1 , ..., n, 

ˆ 
 j ≤ My j , j ∈ B 
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Fig. 1. Performance profile graph of #solved instances for the different proposed 

models for the � 1 norm. 

Fig. 2. Performance profile graph of #solved instances for the different proposed 

models for the � ∞ norm. 
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(  
ˆ 
 j ≤ r j , j ∈ B, 

ˆ 
 j ≥ r j − (1 − y j ) M, j ∈ B, 

ˆ 
 j ≥ 0 , j ∈ B. 

Finally, The proposed Benders algorithm can also be applied to

he problem under the � ∞ 

norm. The resulting inner subproblem

s given by the lower level problem of ( BLP − � ∞ 

). 

. Computational results 

In the following we report some numerical results to compare

he efficiency of the different methods proposed to solve ( BLP ),

nd to check experimentally their scope. 

The computational experiments were carried out on a per-

onal computer with Intel B. Core (TM) i7-4720HQ, 2.60 GH with

6384 MB RAM. The MILP formulations and algorithms were im-

lemented and solved using Xpress Version 8.0. 

The distances considered for the numerical experiments were

omputed using the � 1 and � ∞ 

norms. Therefore, we im-

lemented the MILP formulations and algorithms proposed in

ections 3.1.3 and 3.2.3 , in which we adapted the general methods

n Section 3 to the models with these two particular distances. 

For the computational study we generated different random in-

tances taking into account the following factors: the dimension of

he space, n , the cardinality of B and NB , which are the set of po-

ential locations for the new primary facilities and the set of exist-

ng primary facilities, respectively, and also the maximum budget

 . We considered the following levels for each factor: 

• n = 2 , 3 , 10 , 20 , 
• | B | = 10 0 0 , 20 0 0 , 50 0 0 , 10 0 0 0 , 

• | NB | = 

1 

4 
| B | , 1 

3 
| B | , 1 

2 
| B | , 

• C = 

1 

C ′ | B | , where C ′ = { 3 , 4 } . This C ′ will be used in the tables

for the sake of space. 

The costs, c j , and the weights, w j , were generated randomly

n the interval [0,1], and each coordinate, f ji , of the location of

he primary facilities f j was generated randomly in the interval

 −10 0 0 , 10 0 0] , for all the instances. 

For each combination of levels, 5 different instances were gen-

rated and solved. The CPU time limit to solve the problems was

et to 1800 seconds. 

In Figs. 1 and 2 we show the performance profile graphs of the

umber of solved instances for the different proposed models for

he � 1 -norm ( Fig. 1 ) and � ∞ 

-norm ( Fig. 2 ). We represent in the ab-

cissa axis the time (in seconds) and in the ordinate axis the num-

er of solved instances. Fig. 1 reports the results for the � 1 -norm

nd it compares the two MILP formulations ( BLP − � 1 − 1 ) and

LP- � 1 -2 , the basic Benders algorithm, that we denote by Bend - � 1 ,

nd the Benders algorithm using the separability property, denoted

s Bend- � 1 -sep . Fig. 2 shows the results for the � ∞ 

-norm and it

ompares the MILP formulation, ( BLP − � ∞ 

− 1 ), and Benders algo-

ithm, denoted as Bend- � ∞ 

. 

We can observe in Figs. 1 and 2 that the Benders algorithms

re more efficient than the MILP formulations, in both cases with

he � 1 -and- � ∞ 

-norm cases. The Benders algorithms solve all the

nstances in very short time, whereas none of the MILP formu-

ations could solve to optimality all the instances. We can see in

he figures that the formulations ( BLP − � 1 − 1 ) and BLP- � 1 -2 solve

round 300 out of the 480 instances in 1800 seconds, and formula-

ion ( BLP − � ∞ 

− 1 ) solves around 400 instances in the same time. 

The average number of cuts added in the Benders algorithm is

,03 for Bend - � , 4,75 for Bend- � -sep and 4,28 for Bend- � ∞ 

. The
1 1 
aximum number of Benders cuts, 14, was added for the Bend-

 1 -sep for an instance with n = 10 , | B | = 50 0 0 , | NB | = 6 6 67 and

 = 

1 

4 
| B | . 

For the � 1 -norm case, in Fig. 1 , we can see that the Benders al-

orithm Bend - � 1 solves all the instances in approximately 200 sec-

nds, whereas the Benders algorithm using the separability prop-

rty, Bend- � 1 -sep , needs a bit more time. Nevertheless the perfor-

ance of both methods is very similar. The same trend can be ob-

erved for the MILP formulations, the one without the separability

roperty could solve in the end more instances within the same

ime limit. However, BLP- � 1 -2 works better for the big instances,

 = 10 , 20 (see Fig. 3 in the Appendix ). 

With respect to the � ∞ 

-norm case, Fig. 2 shows that the Ben-

ers algorithm solves all the instances in less than 51 s, meanwhile

 BLP − � ∞ 

− 1 ) only solves, in the same time, approximately one

alf of the instances. 

More details about the Computational Results can be found in

ables 2 and 3 in the Appendix . We report the average CPU times

 CPU ), and the numbers of problems, out of 5, solved to optimality

 #OPT ), for each type of instance and each formulation or algo-

ithm. 

. Extensions 

This section is devoted to present extensions of the problem

 BLP ) to several secondary facilities and non-polyhedral norms. We
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analyze the problem with K > 1 secondary facilities which means

to locate K new facilities also in the lower level problem. Moreover,

we extend the problem ( BLP ) to deal with norms � τ for τ ∈ Q ,

τ ≥ 1 which requires to apply conic programming and conic duality

to obtain results similar to the ones presented in previous sections.

5.1. The model with K secondary facilities (independent followers) 

We are interested to incorporate to the problem ( BLP ) the pos-

sibility to locate several secondary facilities rather than only one,

and the goal of each secondary facility is to minimize the over-

all distance to the primary facilities. In the following, we analyze

problem ( BLP ) with K secondary points to be located in the lower

level problem, that is, we consider that instead of locating one sec-

ondary facility, K of these points must be located. For this exten-

sion we assume that we are given vectors of weights w 

k ∈ R 

n + , for

k = 1 , . . . , K, and we define K vectors of decision variables x k ∈ R 

n ,

for k = 1 , . . . , K; where x k are the coordinates of the location of the

k th secondary point. With this notation, the new problem can be

written as: 

max 
∑ 

k ∈ K 

( ∑ 

j∈ B 
w 

k 
j d(x k , f j ) y j + 

∑ 

j∈ NB 

w 

k 
j d(x k , f j ) 

) 

BLP − K

s.t. 
∑ 

j∈ B 
c j y j ≤ C, 

y j ∈ { 0 , 1 } , j ∈ B, 

x k ∈ arg min 

x k 

∑ 

j∈ B 
w 

k 
j d(x k , f j ) y j + 

∑ 

j∈ NB 

w 

k 
j d(x k , f j ) ∀ k = 1 , ..., K. 

In the particular case in which w 

1 = w 

2 = ... = w 

k , we observe

that by symmetry, there is an optimal solution where the sec-

ondary facilities co-locate. 

Coming back to the general problem ( BLP − K ), the evaluation

of the norm can be done via the primal or dual expression. In both

cases, in order to develop a MILP formulation for the model with

K secondary facilities, we can apply the same technique that in the

previous section. Given a solution y of the upper level problem, the

continuous location problem of each follower is linear and thus,

the strong duality theorem can be applied as before. This implies

that K different one-secondary facility problems are added to the

leader problem. In conclusion, the same approach used with the

one-secondary facility location problem is replicated K times and

the same results follow. 

Furthermore, the Benders algorithm can also be extended to the

case with K followers. The Master Problem for this extension must

be slightly modified: 

max 
∑ 

k ∈ K 
q k MP − K

s.t. q k ≤
∑ 

j∈ B 

n ∑ 

i =1 

w 

k 
j y j r 

kτ
j + 

∑ 

j∈ NB 

n ∑ 

i =1 

w 

k 
j r 

kτ
j ∀ τ ∈ P, ∀ k ∈ K, 

∑ 

j∈ B 
c j y j ≤ C, 

y j ∈ { 0 , 1 } ∀ j ∈ B. 

In addition, in this formulation, there are K primal subproblems

with the same structure but with different set of w weights. There-

fore, in each iteration of this Benders approach, K primal subprob-

lems must be solved. 
.2. The problem under the � τ -norm 

This section extends the analysis of the problem to the case

here the inner subproblem measures distances with � τ -norms via

∈ Q , τ ≥ 1 . Recall that || x || τ = ( 
∑ n 

i =1 | x i | τ ) 1 /τ . 

The problem to be considered in this case is 

ax 
∑ 

j∈ B 
w j || x − f j || τ y j + 

∑ 

j∈ NB 

w j || x − f j || τ BLP − � τ

t. 
∑ 

j∈ B 
c j y j ≤ C, (1)

 j ∈ { 0 , 1 } j ∈ B, (2)

 ∈ arg min 

x 

∑ 

j∈ B 
w j || x − f j || τ y j + 

∑ 

j∈ NB 

w j || x − f j || τ , 

Let ρ ∈ Q be such that 1 /τ + 1 /ρ = 1 . 

In order to reformulate Problem ( BLP − � τ ) as a single level pro-

ram, we use standard arguments of conic duality Ye (2004) and a

epresentation for the � τ -norms given in Blanco et al. (2014) . 

roposition 3. The problem ( BLP − � τ ) can be reformulated as a sin-

le level mixed integer conic program. 

ax 
∑ 

j∈ B 
w j || x − f j || τ y j + 

∑ 

j∈ NB 

w j || x − f j || τ (30)

s.t. 
∑ 

j∈ B 
c j y j ≤ C, 

 j ∈ { 0 , 1 } , j ∈ B, 

 

j∈ B 
w j || x − f j || τ y j + 

∑ 

j∈ NB 

w j || x − f j || τ = 

∑ 

j∈ B ∪ NB 

n ∑ 

i =1 

V ji f ji , 

 + Z j = f j , ∀ j ∈ B ∪ NB, 

| Z j || τ ≤ r j , ∀ j ∈ B ∪ NB, 

 ∈ R 

n , Z j ∈ R 

n , r ∈ R 

n , 

 j0 = −w j y j , ∀ j ∈ B, 

 j0 = w j , ∀ j ∈ NB, 

∑ 

j∈ B ∪ NB 

V ji = 0 , ∀ i = 1 , . . . , n, 

| V j || ρ ≤ V j0 , ∀ j ∈ B ∪ NB, 

 j ∈ R 

n +1 , ∀ j ∈ B ∪ NB. 

roof. We observe that the inner location problem can be for-

ulated as the following conic linear program in standard form

uenberger and Ye (1984) : 

in 

∑ 

j∈ B 
w j y j r j + 

∑ 

j∈ NB 

w j r j 

s.t. x + Z j = f j , ∀ j ∈ B ∪ NB, 

| Z j || τ ≤ r j , ∀ j ∈ B ∪ NB, 

 ∈ R 

n , Z j ∈ R 

n , r ∈ R 

n , 
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Table 1 

Numerical results for ConicP under the � 2 norm. 

INSTANCES ConicP 

n | B | | NB | C’ #OPT CPU 

2 10 0 0 250 3 5 345,75 

2 10 0 0 250 4 4 687,87 

2 10 0 0 333 3 3 826,18 

2 10 0 0 333 4 4 800,60 

2 10 0 0 500 3 4 837,86 

2 10 0 0 500 4 5 413,87 

2 20 0 0 500 3 2 1235,24 

2 20 0 0 500 4 1 1488,53 

2 20 0 0 667 3 0 180 0,0 0 

2 20 0 0 667 4 1 1632,02 

2 20 0 0 10 0 0 3 0 180 0,0 0 

2 20 0 0 10 0 0 4 2 1346,31 

3 10 0 0 250 3 4 690,83 

3 10 0 0 250 4 5 957,83 

3 10 0 0 333 3 2 1259,77 

3 10 0 0 333 4 2 1429,08 

3 10 0 0 500 3 1 1718,03 

3 10 0 0 500 4 2 1524,58 

3 20 0 0 500 3 0 180 0,0 0 

3 20 0 0 500 4 0 180 0,0 0 

3 20 0 0 667 3 0 180 0,0 0 

3 20 0 0 667 4 0 180 0,0 0 

3 20 0 0 10 0 0 3 0 180 0,0 0 

3 20 0 0 10 0 0 4 0 180 0,0 0 
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Fig. 3. Performance profile graph of #solved instances for the different proposed 

models for big instances ( n = 10 , 20 ) for the � 1 norm. 
Therefore, its conic dual can be written, following Ye (2004) , as

he next formulation: 

ax 
∑ 

j∈ B ∪ NB 

n ∑ 

i =1 

V ji f ji 

.t. V j0 = −w j y j , ∀ j ∈ B, 

 j0 = w j , ∀ j ∈ NB, 

∑ 

j∈ B ∪ NB 

V ji = 0 , ∀ i = 1 , . . . , n, 

| V j || ρ ≤ V j0 , ∀ j ∈ B ∪ NB, 

 j ∈ R 

n +1 , ∀ j ∈ B ∪ NB. 

learly, the inner primal and dual problems satisfy Slater condition

o that strong duality applies. This allows us to insert the optimal-

ty conditions in ( BLP − � τ ) to obtain the final single level program

onicP . �

We illustrate the usefulness of the above result with some com-

utational experiments performed on our test instances for the � 2 -

orm. The model has been implemented in XPRESS 8.0 with the

mnl module that allows solving this type of mixed integer sec-

nd order cone problems. Table 1 summarizes our results. As be-

ore, for each combination of n , | B |, | NB | and C’, we solved 5 dif-

erent instances and the table reports, in the last two columns, the

umber of instances out of 5 solved to optimality and the average

PU times. 
As a result of our tests we have observed that already for n = 3

nd | B | = 20 0 0 none of the instances can be solved to optimality

ithin the time limit which justifies not reporting results for larger

ize instances. 

. Conclusions 

This paper considers models for the location of controversial fa-

ilities. Controversial facilities must be understood as those facili-

ies such that their placement induces a disagreement among users

ith different, non-aligned or opposite interests. Semi-obnoxious

acility location and the location and protection of critical infras-

ructures or facilities sensitive to intentional attacks are typical ex-

mples of this area of research. 

We model these situations by a bilevel optimization problem.

he first level locates primary facilities trying to be as far away as

ossible from the secondary ones, which in turns, wish to be as

lose as possible to the primary ones. We develop mathematical

rogramming formulations for the above mentioned bilevel pro-

rams as well as some algorithms that perform very-well in all our

xperiments that range from small problems on the plane ( n = 2)

ith up to | B | = 10 0 0 0 , possibilities for the primary facilities until

imension n = 20 and | B | = 10 0 0 0 . 
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Table 2 

Numerical results for ( BLP ) under the l 1 and ell ∞ norm. 

INSTANCES BLP- � 1 -1 BLP- � 1 -2 Alg - � 1 Alg- � 1 -sep BLP- � ∞ -1 Alg- � ∞ 

n |B| |NB| C’ #OPT CPU #OPT CPU #OPT CPU #OPT CPU #OPT CPU #OPT CPU 

2 10 0 0 250 3 5 10,82 5 10,36 5 0,41 5 0,50 5 2,13 5 0,56 

2 10 0 0 250 4 5 4,80 5 5,89 5 0,62 5 0,52 5 2,22 5 1,03 

2 10 0 0 333 3 5 13,39 5 10,07 5 0,35 5 0,41 5 2,19 5 0,65 

2 10 0 0 333 4 5 7,57 5 4,98 5 0,55 5 0,62 5 2,47 5 1,05 

2 10 0 0 500 3 5 11,70 5 12,76 5 0,38 5 0,43 5 8,53 5 0,81 

2 10 0 0 500 4 5 7,86 5 6,35 5 0,54 5 0,52 5 3,02 5 0,95 

2 20 0 0 500 3 5 36,59 5 37,27 5 0,75 5 1,44 5 6,34 5 0,79 

2 20 0 0 500 4 5 13,36 5 11,66 5 0,65 5 0,73 5 9,15 5 1,36 

2 20 0 0 667 3 5 217,01 5 152,79 5 0,68 5 0,85 5 7,20 5 0,92 

2 20 0 0 667 4 5 20,58 5 14,54 5 0,45 5 0,60 5 6,14 5 1,17 

2 20 0 0 10 0 0 3 5 56,48 5 78,63 5 0,45 5 0,61 5 15,29 5 0,81 

2 20 0 0 10 0 0 4 5 29,85 5 20,60 5 0,52 5 0,65 5 12,74 5 1,56 

2 50 0 0 1250 3 5 204,62 5 508,34 5 1,19 5 1,58 5 48,51 5 1,62 

2 50 0 0 1250 4 5 124,68 5 97,10 5 1,49 5 2,36 5 52,24 5 1,70 

2 50 0 0 1667 3 5 381,53 5 268,18 5 1,03 5 1,32 5 45,06 5 1,47 

2 50 0 0 1667 4 5 135,94 5 198,89 5 2,08 5 1,66 5 37,01 5 1,96 

2 50 0 0 2500 3 5 416,01 5 369,43 5 0,80 5 1,12 5 139,15 5 2,34 

2 50 0 0 2500 4 5 107,17 5 405,78 5 1,23 5 1,89 5 38,32 5 1,92 

2 10 0 0 0 2500 3 4 708,80 3 955,21 5 1,68 5 2,57 5 137,97 5 3,29 

2 10 0 0 0 2500 4 5 325,03 5 355,51 5 2,44 5 3,75 5 81,66 5 3,72 

2 10 0 0 0 3333 3 5 390,82 5 296,18 5 1,94 5 2,78 5 121,14 5 3,42 

2 10 0 0 0 3333 4 5 329,09 5 439,71 5 3,09 5 3,46 5 159,98 5 3,16 

2 10 0 0 0 50 0 0 3 5 506,03 4 671,22 5 2,16 5 2,09 4 530,49 5 3,38 

2 10 0 0 0 50 0 0 4 5 516,73 5 416,86 5 2,83 5 3,27 5 141,33 5 3,77 

3 10 0 0 250 3 5 9,67 5 19,03 5 0,21 5 0,27 5 5,95 5 0,70 

3 10 0 0 250 4 5 58,74 5 43,20 5 0,63 5 0,71 5 3,09 5 1,18 

3 10 0 0 333 3 5 21,51 5 50,24 5 0,36 5 0,37 5 6,99 5 0,60 

3 10 0 0 333 4 5 29,05 5 32,52 5 0,65 5 0,90 5 4,68 5 1,21 

3 10 0 0 500 3 5 26,14 5 28,70 5 0,34 5 0,49 5 10,17 5 0,57 

3 10 0 0 500 4 5 33,46 5 47,28 5 0,38 5 0,52 5 6,86 5 0,73 

3 20 0 0 500 3 5 120,41 5 144,41 5 0,38 5 0,53 5 63,77 5 1,19 

3 20 0 0 500 4 5 389,05 5 301,49 5 0,76 5 1,22 5 21,33 5 1,41 

3 20 0 0 667 3 5 316,33 5 232,75 5 1,04 5 0,92 5 31,18 5 1,04 

3 20 0 0 667 4 5 129,52 5 224,55 5 0,47 5 0,56 5 21,81 5 1,48 

3 20 0 0 10 0 0 3 5 113,90 5 261,64 5 0,65 5 0,53 5 81,42 5 1,38 

3 20 0 0 10 0 0 4 5 179,31 5 249,42 5 0,62 5 0,71 5 11,05 5 0,88 

3 50 0 0 1250 3 4 1014,05 3 1310,24 5 1,95 5 1,85 5 131,33 5 1,94 

3 50 0 0 1250 4 3 1352,73 2 1442,08 5 2,43 5 2,24 5 106,38 5 2,12 

3 50 0 0 1667 3 4 763,66 4 669,57 5 1,14 5 1,28 5 180,78 5 1,94 

3 50 0 0 1667 4 3 1102,02 4 1047,36 5 1,56 5 1,91 5 213,59 5 2,08 

3 50 0 0 2500 3 5 636,19 5 689,33 5 0,76 5 1,14 5 391,97 5 2,07 

3 50 0 0 2500 4 5 592,53 2 1223,05 5 1,42 5 1,58 5 77,89 5 1,90 

3 10 0 0 0 2500 3 1 1778,05 1 180 0,0 0 5 2,42 5 3,38 5 899,86 5 3,09 

3 10 0 0 0 2500 4 1 1727,79 0 – 5 5,59 5 5,16 5 198,48 5 4,18 

3 10 0 0 0 3333 3 3 1127,45 1 1732,91 5 2,67 5 3,91 5 832,12 5 3,17 

3 10 0 0 0 3333 4 3 1253,69 2 1321,56 5 4,79 5 6,15 4 797,61 5 3,91 

3 10 0 0 0 50 0 0 3 3 1379,12 1 1771,16 5 2,86 5 4,41 4 470,05 5 4,01 

3 10 0 0 0 50 0 0 4 0 – 0 – 5 4,18 5 5,79 5 325,39 5 4,87 
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Table 3 

Numerical results for ( BLP ) under the � 1 and l ∞ norm. 

INSTANCES BLP- � 1 -1 BLP- � 1 -2 Alg - � 1 Alg- � 1 -sep. BLP- � ∞ -1 Alg- � ∞ 

n |B| |NB| C’ #OPT CPU #OPT CPU #OPT CPU #OPT CPU #OPT CPU #OPT CPU 

10 10 0 0 250 3 5 175,69 5 262,45 5 0,52 5 0,84 5 23,53 5 0,73 

10 10 0 0 250 4 5 286,71 5 199,67 5 0,58 5 1,02 5 10,04 5 0,60 

10 10 0 0 333 3 5 170,27 5 168,75 5 0,29 5 0,57 5 50,58 5 0,68 

10 10 0 0 333 4 5 380,23 5 308,91 5 0,79 5 0,98 5 16,31 5 0,66 

10 10 0 0 500 3 5 365,20 5 412,48 5 0,56 5 0,64 5 40,66 5 0,80 

10 10 0 0 500 4 4 838,00 5 608,46 5 0,74 5 1,17 5 26,14 5 1,16 

10 20 0 0 500 3 3 1538,42 3 1310,11 5 0,81 5 1,90 5 104,57 5 1,31 

10 20 0 0 500 4 3 1197,88 4 1020,28 5 1,04 5 1,44 5 64,34 5 1,62 

10 20 0 0 667 3 2 1406,81 2 1365,28 5 1,23 5 1,20 5 123,13 5 1,22 

10 20 0 0 667 4 3 1092,84 4 928,63 5 1,01 5 1,24 5 58,13 5 1,16 

10 20 0 0 10 0 0 3 4 1155,24 4 1125,38 5 0,72 5 0,83 5 183,55 5 1,59 

10 20 0 0 10 0 0 4 3 980,54 3 1215,99 5 1,11 5 1,84 5 91,77 5 1,66 

10 50 0 0 1250 3 1 1673,56 1 1796,25 5 2,66 5 3,00 3 1265,41 5 4,80 

10 50 0 0 1250 4 0 – 0 – 5 9,46 5 14,29 5 421,92 5 5,76 

10 50 0 0 1667 3 0 – 0 – 5 5,08 5 10,21 4 840,57 5 3,86 

10 50 0 0 1667 4 2 1430,78 2 1690,69 5 2,77 5 3,19 4 627,48 5 5,12 

10 50 0 0 2500 3 1 1568,60 0 – 5 3,91 5 5,34 4 754,36 5 5,44 

10 50 0 0 2500 4 1 1727,35 1 1649,57 5 6,04 5 8,31 3 1125,20 5 5,97 

10 10 0 0 0 2500 3 0 – 0 – 5 9,37 5 17,15 2 1211,56 5 10,24 

10 10 0 0 0 2500 4 0 – 0 – 5 16,19 5 26,46 4 955,69 5 8,48 

10 10 0 0 0 3333 3 0 – 0 – 5 17,88 5 20,49 1 1649,16 5 13,44 

10 10 0 0 0 3333 4 0 – 0 – 5 19,62 5 18,73 3 1152,58 5 10,75 

10 10 0 0 0 50 0 0 3 1 180 0,0 0 0 – 5 11,24 5 23,00 2 180 0,0 0 5 10,91 

10 10 0 0 0 50 0 0 4 0 – 0 – 5 28,00 5 16,26 2 1314,08 5 14,30 

20 10 0 0 250 3 4 797,87 5 477,74 5 0,70 5 1,38 5 41,66 5 1,25 

20 10 0 0 250 4 5 852,01 5 548,28 5 0,64 5 1,31 5 20,22 5 0,88 

20 10 0 0 333 3 4 608,99 5 296,04 5 0,54 5 1,03 5 29,01 5 0,99 

20 10 0 0 333 4 4 1026,53 4 773,41 5 1,01 5 1,93 5 39,01 5 1,55 

20 10 0 0 500 3 4 881,29 5 412,55 5 0,51 5 1,13 5 55,68 5 1,42 

20 10 0 0 500 4 2 1499,86 3 1478,83 5 0,93 5 1,55 5 36,02 5 1,48 

20 20 0 0 500 3 1 1629,43 2 180 0,0 0 5 1,93 5 2,21 5 212,07 5 2,08 

20 20 0 0 500 4 1 1623,38 2 1634,03 5 3,91 5 2,82 5 217,86 5 2,42 

20 20 0 0 667 3 2 1612,20 3 1801,02 5 1,78 5 2,05 5 223,80 5 2,40 

20 20 0 0 667 4 3 1421,62 2 1416,62 5 1,34 5 2,44 5 134,67 5 2,64 

20 20 0 0 10 0 0 3 0 – 2 180 0,0 0 5 2,45 5 1,86 5 181,95 5 3,02 

20 20 0 0 10 0 0 4 1 180 0,0 0 1 180 0,0 0 5 5,09 5 3,08 5 345,70 5 3,44 

20 50 0 0 1250 3 0 – 0 – 5 7,20 5 9,37 3 1188,15 5 8,67 

20 50 0 0 1250 4 0 – 0 – 5 14,87 5 17,02 5 868,00 5 9,05 

20 50 0 0 1667 3 0 – 0 – 5 7,92 5 30,75 2 1513,57 5 8,88 

20 50 0 0 1667 4 0 – 0 – 5 7,28 5 18,85 5 1034,49 5 9,46 

20 50 0 0 2500 3 0 – 0 – 5 16,23 5 13,53 2 2447,37 5 15,67 

20 50 0 0 2500 4 0 – 0 – 5 20,15 5 10,45 2 1585,53 5 13,13 

20 10 0 0 0 2500 3 0 – 0 – 5 52,42 5 65,91 2 1745,86 5 23,08 

20 10 0 0 0 2500 4 0 – 0 – 5 96,02 5 63,30 1 180 0,0 0 5 27,02 

20 10 0 0 0 3333 3 0 – 0 – 5 28,93 5 25,17 2 1750,37 5 22,32 

20 10 0 0 0 3333 4 0 – 0 – 5 125,00 5 93,66 0 – 5 29,79 

20 10 0 0 0 50 0 0 3 0 – 0 – 5 40,39 5 85,61 2 180 0,0 0 5 38,66 

20 10 0 0 0 50 0 0 4 0 – 0 – 5 88,29 5 167,54 1 1800 5 27,76 
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